Omega-6 Fatty Acids What, Why, Where and How?

Peter Lapinskas www.lapinskas.com

A Fitter Future for Fats Leatherhead Food RA 6 June 2000

What, Why, Where and How?

- What are Omega-6 fatty acids?
- Why are they important?
- Where are they found?
- How can they be used?

Fat is bad for you!

Fat is bad for you!

Some types of

may be are Fat is bad for you!

Some types of

Some types of fat may be bad for you

on the other hand.....

Some types of fat may be bad for you

on the other hand.....

Some types of fat are essential for human health

Fats and Fatty acids

- Fats and oils are made of triglycerides (98%+)
- Each triglyceride molecule contains 3 fatty acids
- There are a range of different fatty acids
- The mix of fatty acids determines the properties of the fat or oil
- Therefore will discuss fatty acids rather than fat

Structure of a Triglyceride

Structure of a Triglyceride

Structure of a Fatty Acid

Linoleic acid

cis, cis 9,12 octadecadienoic acid

An omega-6 fatty acid

Omega-6 Fatty Acid Functions

- Membrane structure fluidity, receptors, enzymes and channels
- Skin permeability
- Cholesterol movement ω-6 fatty acid esters are more soluble
- Precursors for regulatory molecules
 - Control of inflammation
 - Platelet aggregation
 - Vasoconstriction/dilation

Omega-6 Pathway

Omega-6 Pathway

Linoleic acid (18:2) γ -Linolenic acid (18:3) Dihomo- γ -linolenic acid (20:3) Arachidonic acid (20:4)

Omega-6 Pathway

Oils Containing GLA

- Evening Primrose (Oenothera spp.)
- Borage (Borago officinalis)
- Blackcurrant (Ribes nigrum)
- Hemp (Cannabis sativa)
- Fungi (e.g. Mucor javanicus)
- Others

	Linoleic	GLA	ALA	Stearidonic	Erusic
Evening primrose	68 - 75	8 - 15	0	0	0
Borage	35 - 40	18 - 25	0 - 1	<1	2 - 3
Blackcurrant	45 - 55	12 - 18	12 - 15	2 - 4	0
Hemp	50 - 60	1 - 3	15 - 25	0 - 2	0
Mucor	10	19	0	0	0
Echium	16	12	28	14	<1

	Linoleic	GLA	ALA	Stearidonic	Erusic
Evening primrose	68 - 75	8 - 15	0	0	0
Borage	35 - 40	18 - 25	0 - 1	<1	2 - 3
Blackcurrant	45 - 55	12 - 18	12 - 15	2 - 4	0
Hemp	50 - 60	1 - 3	15 - 25	0 - 2	0
Mucor	10	19	0	0	0
Echium	16	12	28	14	<1

	Linoleic	GLA	ALA	Stearidonic	Erusic
Evening primrose	68 - 75	8 - 15	0	0	0
Borage	35 - 40	18 - 25	0 - 1	<1	2 - 3
Blackcurrant	45 - 55	12 - 18	12 - 15	2 - 4	0
Hemp	50 - 60	1 - 3	15 - 25	0 - 2	0
Mucor	10	19	0	0	0
Echium	16	12	28	14	<1

	Linoleic	GLA	ALA	Stearidonic	Erusic
Evening primrose	68 - 75	8 - 15	0	0	0
Borage	35 - 40	18 - 25	0 - 1	<1	2 - 3
Blackcurrant	45 - 55	12 - 18	12 - 15	2 - 4	0
Hemp	50 - 60	1 - 3	15 - 25	0 - 2	0
Mucor	10	19	0	0	0
Echium	16	12	28	14	<1

GLA Oils Market

- Mostly healthfood with some pharmaceutical
- No reliable volume data because of commercial secrecy
- Best guesses
 - Evening primrose
 - Borage
 - Remainder

1,000 - 1,500 t/a 500 - 750 t/a 200 - 400 t/a

Evening primrose market

- 90% from China
- Unstable production leading to large price swings
- £3 £15 per kg over a 5 7 year cycle
- Currently in surplus, prices at bottom of range
- Some production in Holland, Poland, New Zealand and USA

Evening primrose market

- 'Cold' press vs. solvent extraction
- Use of press cake
- New developments:
 - New Chinese joint ventures
 - High GLA varieties

Borage market

- Mostly sold as seed
- Main producers: UK, Holland, Canada and New Zealand
- Chinese can't compete
- Canadian yields unstable unbalances price
- New Zealand is 6 months out of phase
- Price swings much less than EP
 £2.20 £4.50 per kg for seed, not cyclical

Concentrated GLA oils

- Processes available for concentrating GLA to various levels up to 95%
- Evening primrose and borage are best starting materials
- Not yet commercialised
- Savings on capsule numbers can offset cost of concentration

Other GLA oils

• Blackcurrant

- By-product of juice and jam manufacture
- Mostly UK, some European
- Prices vary according to availability
- Hemp
 - Was held back by drug issues
 - Approved varieties now available
 - Major use as fibre, biofuel, animal feed GLA content not being significantly exploited

Potential new uses

- Alternative presentations
 - Currently soft gel capsules
 - Sachets, oil sprays?
- New products
 - Salad oils
 - Spreads (butter, margarine)
- Requirements
 - Avoid high (>100C) temperatures
 - Protect from oxygen

Oxidation

- GLA oils sensitive to oxygen
- Produce off flavours go rancid
- Three stage process:
 - 1) Formation of peroxides
 - 2) Breakdown into aldehydes and other SOP's
 - 3) Polymerisation

Measurement of oxidation

- Peroxide value measures current oxidation
- Anisidine value measures historic oxidation
- Polymerisation not normally measured
- Need both PV and AnV to assess an oil batch
- Can use Totox number where:

 $Totox = AnV + (2 \times PV)$

Control of oxidation

- Use of inert blanket gas (e.g. Nitrogen)
- Avoid metal ions, by use of stainless steel or inert linings
- Add antioxidants (e.g. Vitamin E)
- Crude evening primrose oil contains high level of endogenous antioxidants

Conclusions

- Omega-6 fatty acids are key in human nutrition
- Many people suffer from functional deficiency
- Supplementation with GLA can alleviate this deficiency
- GLA products sold in healthfood market well understood by consumers
- Time may be ripe to extend this market with a wider range of products