Diabetic Neuropathy

Peter Lapinskas

www.lapinskas.com

Control of blood sugar

- Sugar (glucose) required for metabolism and energy
- Produced from digestion and breakdown of starches
- Blood glucose concentration controlled by insulin
- Insulin made in β -cells in Islets of Langerhans in the pancreas
- Insulin controls transfer of glucose from blood into many cells

Diabetes Mellitus

- Defect in the glucose control system
- Type 1 diabetes
 - 'Juvenile onset diabetes'
 - 'Insulin dependent diabetes (IDDM)'
 - Reduced insulin production
 - Caused by autoimmune destruction of insulin-producing cells
 - Treated with insulin replacement

Diabetes Mellitus

- Type 2 diabetes
 - 'Late onset diabetes'
 - 'Non-insulin dependent diabetes (NIDDM)'
 - Reduced sensitivity to insulin
 - Associated with obesity, physical inactivity, poor diet, genetic predisposition
 - May eventually become IDDM

Diabetes Mellitus

- Drug categories for type 2 diabetes
 - Insulin secretagogues
 - Enhance insulin secretion (eg Sulphonylurea)
 - Insulin sensitisers
 - Enhance muscle cell sensitivity (PPARg agonists)
 - Slow down glucose release from liver (Biguanides)
 - Digestion modulators
 - Hinder starch digestion (α -glucosidase inhibitors)
 - Block fat absorption to reduce obesity (Orlistat)

Long-term problems (1)

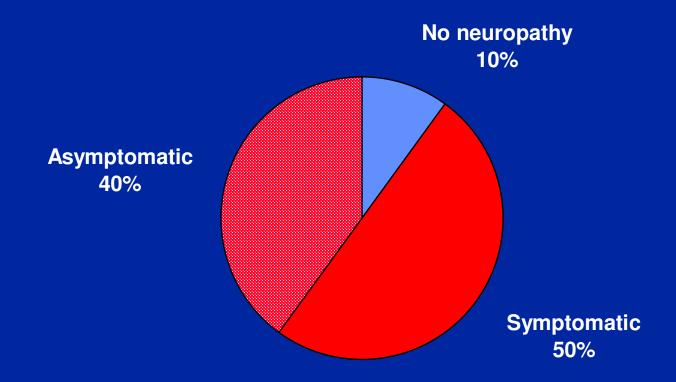
- Microvascular damage
 - Nephropathy (kidneys)
 - Damage to glomeruli
 - Blood albumin leaks into urine (diagnostic)
 - Loss of filtration capacity (kidney failure)
 - Retinopathy (eyes)
 - Proliferation of fragile blood vessels in retina
 - Blood protein leaks into eye
 - Scar tissue damages retina
 - Neuropathy (nerves)

Long-term problems (2)

- Macrovascular damage
 - Atherosclerosis (deposits in blood vessels)
 - 75% of early diabetic deaths
 - Angina (reduced blood flow to heart)
 - Chest pains
- Hypertension (high blood pressure)
 - Heart and kidney disease

'Diabetes - a leading cause of death in USA'

Diabetic Neuropathy


- Damage to nerve fibres and capillaries
- Symptoms depend on nerves involved
 - Motor fibres → Muscular weakness
 - Sensory fibres → Loss of sensation
 - · also prickling, tingling, aching and pain
 - Autonomic fibres → loss of function
 - functions not under conscious control such as digestion, bladder, genitals, cardiovascular.

Diabetic Neuropathy

- Other Consequences
 - Diabetic foot (15% of all diabetics)
 - Compression neuropathies
 - eg carpal tunnel syndrome
- Risk factors
 - Smoking, >40 years old, poor glucose control
 - Affects Type 1 and Type 2

Incidence of Diabetic Neuropathy

as a proportion of all diabetics 20 years after diagnosis

Diabetic Neuropathy

- Current treatment
 - Careful blood sugar control
 - Drug treatment of symptoms
 - eg painkillers, metacloprimide, Viagra
 - Diet
 - Foot hygiene and maintenance
 - Exercise

Underlying Mechanisms

Agreement not yet reached on exact causal relationship between insulin imbalance and nerve damage.

The relative importance and inter-relationship of the various mechanisms is the subject of ongoing research and debate.

Physical manifestations

- Nerve fibres degenerate
- Blood vessels supplying the nerves are 'grossly diseased'

Any theory needs to account for both

Pathways of action

- Polyol pathway
- Triose phosphate effects
- Failure of nerve growth & repair mechanism
- Fatty acid metabolism

Polyol Pathway

- Polyol = Polyhydroxy alcohols
- High blood glucose
 - Nerve cell and capillary membranes have insulin-independent glucose transport.
 - High intra-cellular glucose levels
 - Conversion of glucose to sorbitol in nerve cells by aldose reductase enzyme
 - Sorbitol cannot cross membranes and therefore accumulates

Polyol Pathway

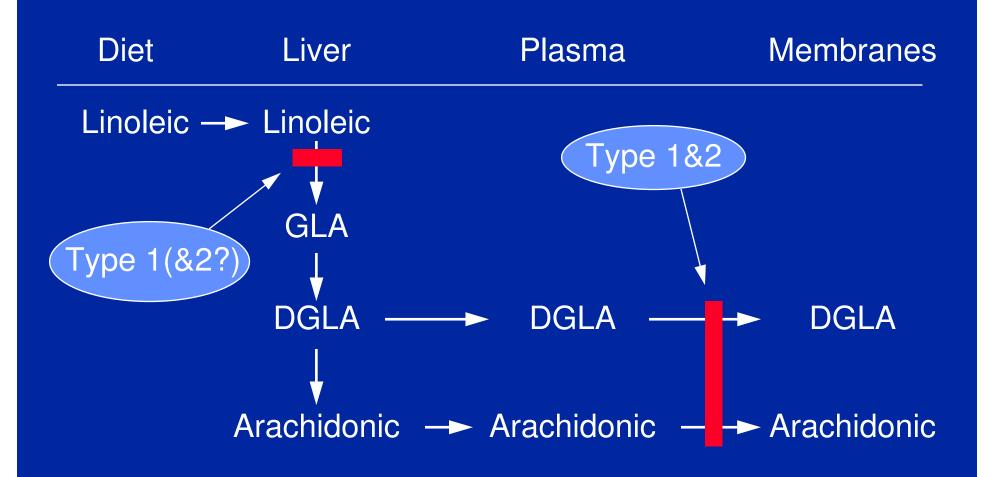
- Consequences of high sorbitol concentration:
 - Osmotic damage to nerve cells
 - reduction in nerve myoinositol
 - Inhibition of nitric oxide (NO) production
 - Aldose reductase competes for NADPH
 - NO is vasodilator
 - Increased production of free radicals
 - Superoxide, hydrogen peroxide, hydroxyl
 - Formed during mitochondrial respiration
 - Increased oxidative stress (proteins, lipids, DNA)

Polyol Pathway

- Treatment possibilities
 - Aldose reductase inhibitors
 - Supplemental myoinositol
 - Nitric oxide stimulation/sensitisation
 - Vasodilators
 - Antioxidants

Triose phosphates

- High intracellular glucose leads increased production of triose phosphates
 - Activation of protein kinase C (PKC) via DAG
 - Damages capillaries (permeability, contractility)
 - Damages nerve function
 - Non-enzymic reaction with proteins & DNA
 - Advanced Glycation End-products (AGEs)
 - Damage to capillaries and nerve fibres
 - Specific cellular AGE receptors
 - Protein cross-linking


Treatment possibilities

- PKC inhibitors
- Remove AGE precursors
 - α-Oxoaldehyde scavengers
- Block AGE receptors
- Block protein cross linking
 - Aminoguanidine

Nerve Growth and Repair

- Reduced levels of :
 - Nerve Growth Factor (NGF)
 - Neurotrophin 3 (NT-3)
- Supplementation does not influence nerve blood flow or motor conduction velocity in rats

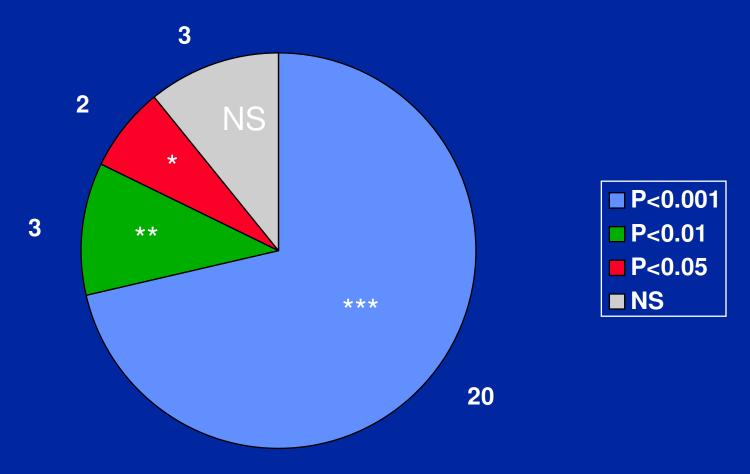
Fatty acid metabolism

Fatty acid metabolism

- Functions of DGLA and AA in nerves
 - Incorporated into membranes
 - required for normal nerve structure, which is required for normal nerve conduction
 - Required for regulation of nerve conduction
 - via inositol/calcium cycle and PGE₁
 - Required for microvascular system
 - DLMG Prostaglandin E₁
 - AA Prostacyclin

Fatty acid metabolism

- Failure of incorporation may be because of:
 - actual reduced incorporation; or
 - excessive peroxidation; or
 - excessive removal
- Overcome conversion blockage by supplementing with GLA
- Evening primrose oil contains 9% GLA

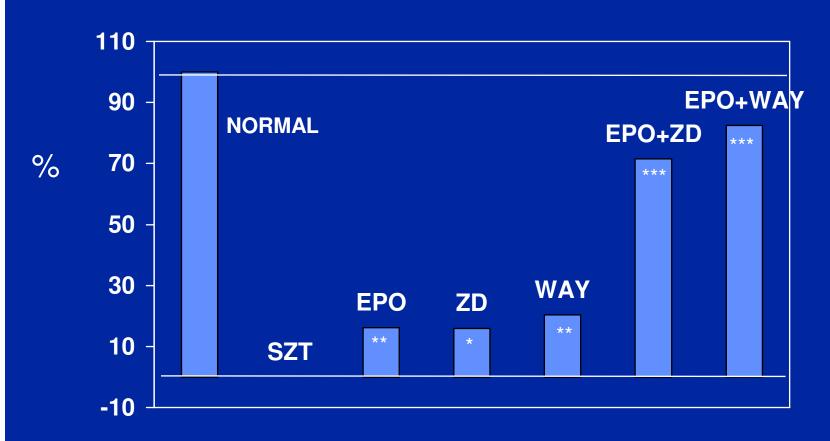

GLA Animal Studies

- All studies in streptozotocin rats show prevention and reversal of neuropathy
- Acts primarily through increased nerve blood flow
- Mainly through increased prostacyclin and hence nitric oxide
- No effect on polyol pathway

- 12 x 500 mg capsules/day EPO
- 3 randomised placebo-controlled studies
 - 1) 22 patients in 1 centre
 - All parameters improved in GLA group
 - All parameters deteriorated in placebo group
 - Many of differences statistically significant
 - 2) 111 patients in 7 centres
 - 3) 293 patients in 10 centres

- 28 Parameters measured in studies 2&3:
 - Conduction velocity
 - Action potential amplitudes
 - Detection of temperature changes (hot & cold)
 - Sensory functions
 - Muscle strength
 - Reflexes

Combined results (n=404)



28 parameters - all improved relative to placebo

- Confirm animal studies
- Demonstrate beneficial effect
- No effect on glycosylated haemoglobin
- Very safe
 - 26 events reported on active (n=202)
 - 34 events reported on placebo (n=202)
 - mostly mild gastrointestinal upset
 - none serious


- GLA does not affect polyol pathway
- Complimentary effect?
- Streptozotocin-treated rats
- Threshold doses of EPO and 2 ARIs
- Measure:
 - Nerve conduction velocity
 - Vascular conductance
- Use two ARIs with different modes

Effect on nerve conduction velocity

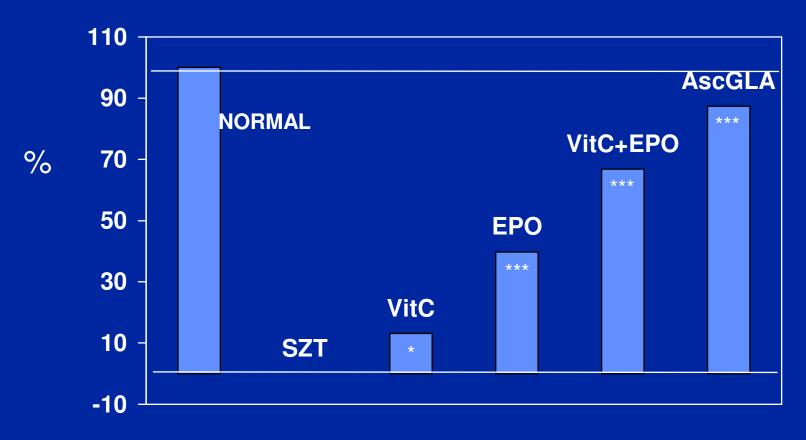
WAY = WAY121509 ZD = ZD5522

Effect on nerve vascular conductance

Combined effect is much greater than additive

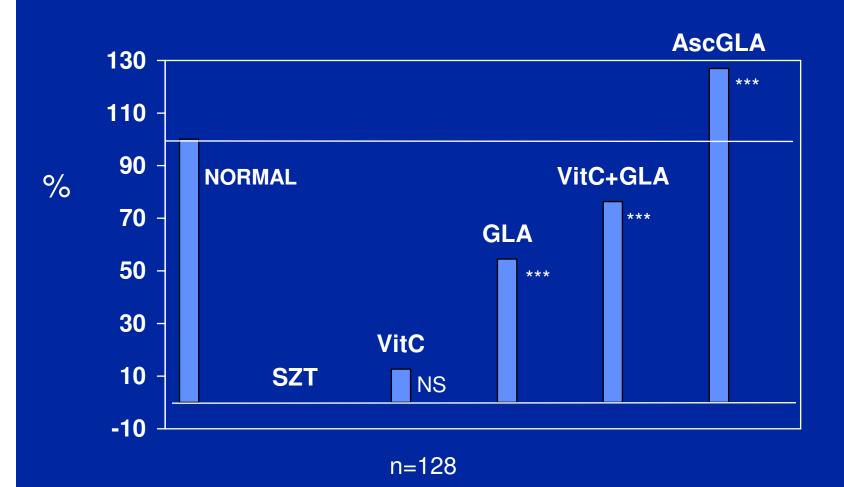
Dose required to produce same effect as other component

	Additive	Observed
EPO required	0.8x	13.3x
ZD5522 required	1.8x	6.8x


- No effect of EPO on polyol pathway
- No effect on glycosylated haemoglobin
- Vitamin C as an alternative?
 - Effective ARI
 - Powerful antioxidant (protects GLA)
 - May be deficient in diabetics
 - Transport into cells also controlled by insulin

GLA + Vitamin C

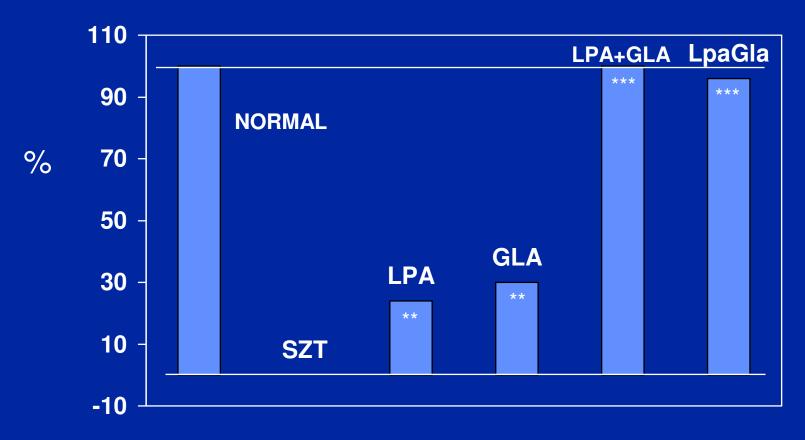
- Streptozotocin-treated rats
- Included meglumine salt of ascorbyl-GLA
 - Novel compound
 - Delivers vit C and GLA to same site
 - GLA moiety makes vit C lipid soluble


GLA + Vitamin C

Effect on nerve conduction velocity

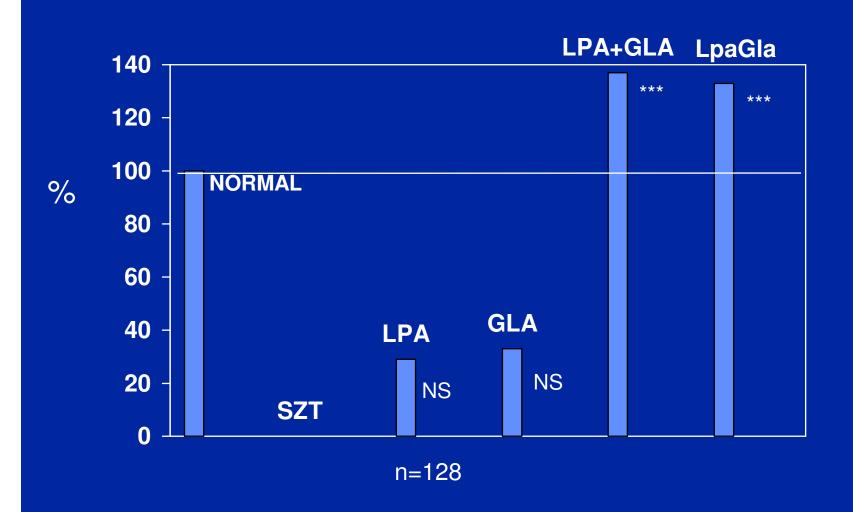
GLA + Vitamin C

Effect on nerve vascular conductance



GLA + Lipoic acid

- Lipoic acid is a naturally occurring free radical scavenger
- 'metabolic antioxidant'
- Regenerates major antioxidants
 - vit C, glutathione, thioredoxone, ubiquinone
- Protects NO synthesis


GLA + Lipoic Acid

Effect on nerve conduction velocity

GLA + Lipoic Acid

Effect on nerve vascular conductance

Synergistic Effects

- GLA acts via prostacyclin
- Vitamin C and Lipoic Acid act via Nitric Oxide
- Together their effect is much greater than would be expected from additivity
- Potential treatment for neuropathy?

Commercial Situation

- EPO was rejected by regulators
- GLA therefore discredited in industry
- Original company folded
- Patent protection running out
- May not see products commercialised